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A new cosmic model, introduced in 1997, is extended to account for: (i) a vacuum energy, ρv �
8.9 × 10−30 g-cm−3, and ΩΛ = 8πρvG/3H2 � 1, (ii) the Hubble (m, z) relation, (iii) a T (z) =
2.73(1 + z) K relation that fits all current CBR results, (iv) the velocity dipole distribution of
radiogalaxies (v) (1 + z)−1 dilation of SNe Ia light curves, (vi) the Sunyaev–Zeldovich thermal
effect, (vii) Olber’s paradox, (viii) a ∼ (1 + z)−3.56 modified Tolman relation, (ix) SN dimming for
z < 1, and for z > 1 a brightness enhancement that fits SN 1997ff results and (x) predicts possible
detection of galaxies, quasars, SN and GRBs with z > 10.
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Bahcall [1] has enthused “The Big Bang is bang on”
because recent Cosmic Blackbody Radiation (CBR) mea-
surements [2] at z = 2.34 match its prediction of 9.1 K.
He laments, however, this means he and like-minded col-
leagues will now miss the excitement of searching for a
new cosmic model. His lament is premature. This Let-
ter explores the exciting prospect that the New Redshift
Interpretation (NRI), a relatively new cosmic model [3],
equally qualifies as being ‘bang on,’ first because it ac-
counts for the 2.73 K CBR locally, plus the more recent
measurements at z = 2.34 and z = 3.025 [4]. Secondly,
because it provides a new explanation of the enhanced
brightness of high-z supernovae [5], and the dipole ve-
locity distribution of radiogalaxies [6]. Thirdly, because
it makes brightness predictions for even higher redshift
(z > 10) objects that strongly suggest they should be
detectable. And fourthly because, in a report that has
thus far received scant attention [7], I describe what may
be a potentially exciting discovery of evidence showing
GPS operation reveals the universe is governed relativis-
tically by Einstein’s static solution of the field equations,
with its fixed in-flight photon wavelength (λ) prediction,
and not big bang’s Friedmann-Lemaitre (F-L) solution,
with its hypothesized in-flight λ variation and cosmolog-
ical redshifts. Unless this discovery is refuted, then: (i)
It follows that cosmological redshifts – upon which all of
big bang is hinged – are not genuine physical phenomena
and, (ii) an alternative astrophysical framework of the
cosmos must exist that incorporates the Einstein static
solution with its fixed in-flight λ, along with radically
different initial conditions. This Letter extends the NRI
model as a first step in formulating a new cosmic model.

In late 1997, before the SNe Ia evidence for cosmic re-
pulsion was published in early 1998 by Riess et al. [8]
and Perlmutter et al. [9], I developed the NRI model
[3], which predicted that ours is a universe dominated
by vacuum energy density, ρv � 8.9 × 10−30 g-cm−3

and density parameter (ΩΛ)NRI = 8πρvG/3H2
o � 1,

which compares to ΩΛ ∼ 0.7 from SNe Ia observations
[5]. The NRI accounts for the Hubble redshift relation

in terms of Einstein gravitational redshifts and relativis-
tic Doppler redshift caused by vacuum gravity repulsion.
Since the latter produces a true Hubble recession of the
galaxies away from a nearby cosmic Center (C), the NRI
represents a physically expanding universe, but without
big bang’s singularity, F-L expansion, and Cosmological
Principle. In particular the NRI associates the 2.7 K
CBR with cavity radiation, instead of expansion-shifted
big bang relic radiation. Cavity radiation exists in the
NRI model because in it galaxies of the visible universe
are enclosed by a thin, very distant outer shell of closely-
spaced galaxies at a distance R from C. The concept of a
nearby C departs radically from modern cosmology, but
it uniquely accounts for the existence of both the hereto-
fore unexplained quantized redshifts and quasar redshift
peaks [10]. This Letter contends that quasars grouped
in different zi ± ∆zi intervals are in different spherical
shells at cosmological distances – hence that a Center ex-
ists nearby – thus implying that Earth’s motion through
the CBR must result in a dipole velocity distribution of
distant galaxies. This has now been confirmed [6].

The NRI’s explanation of the CBR’s temperature mea-
surements utilizes the radial variation of gravitational po-
tential within the spherical cavity. Thus blackbody cav-
ity radiation temperature, T (z), at any interior point, P,
depends on the Einstein gravitational redshift between
P and the outer shell, or between P and C. In fact if
the vacuum pressure, pv, is negative, then the vacuum
density, ρv, will be positive, and the summed vacuum
pressure/energy contributions to vacuum gravity will be
−2ρv. So, excluding the outer galactic shell at R, the
net density throughout the cosmos from C to R would
be ρ − 2ρv, where ρ is the average mass/energy density
of ordinary matter. Beyond R both densities are assumed
to either cancel or diminish to negligible values, which ef-
fectively achieves for the NRI framework what Birkhoff’s
theorem did for standard cosmology. By including ρv

and pv into the gravitational structure of the cosmos,
together with appropriate boundary conditions, one ob-
tains T (z) = 2.73(1 + z) K for the CBR temperature-
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redshift equation [3], which duplicates big bang’s pre-
diction for all z, but without its F-L expansion. Thus,
radiation emitted from the outer shell is gravitationally
redshifted to become the 2.73 K blackbody cavity ra-
diation here at the Galaxy [3], and 9.1 K at z = 2.34
and 10.97 K at z = 3.025, in accord with recent mea-
surements of 6.0 K < T < 14 K [2] and T = 12.1+1.7

−3.2 K
[4]. Interestingly, years ago Misner et al. [11] theorized,
“The cosmic microwave radiation has just the form one
would expect if the earth were enclosed in a box (‘black-
body cavity’) with temperature 2.7 K.” The MTW box
resembles the NRI’s outer shell. But the NRI’s vacuum
energy and gravitational redshifts clearly distinguish it
from the MTW scenario.
True blackbody cavity radiation results from assuming

the outer shell consists of regularly spaced galactic clus-
ters with stars composed of pure H at uniform tempera-
ture 5400 K, which, within broad limits, is an adjustable
parameter [3]. On this basis the gravitational redshift
from the outer shell to C is 5400 K/2.726 K� 2000, and
the distance from C to the outer shell is R = 14.24×109 ly
[3]. Thus in the NRI the ripples in the CBR [12, 13] are
preliminarily attributed to either regularly spaced voids
between its galactic clusters and/or small temperature
variations within the clusters. A separate paper [14] ex-
plores whether the latter might also account for the thus
far unexplained hot spots in the 2.7 K CBR [15]. More-
over since all galaxies in the visible universe are back-
lighted by the outer shell, they will cast a shadow in local
2.7 K CBR measurements. This is a new interpretation
of the Sunyaev-Zeldovich (S-Z) thermal effect [16]. The
kinematic S-Z effect is treated separately [14].
To compare the NRI model with the Tolman rela-

tion we follow the treatment of Ellis [17] and let L be
a galaxy’s intrinsic luminosity, and rg, the galaxy ob-
server distance measured by an observer in the galaxy’s
rest-frame. The proper flux measured locally would
be Fg = L/4πr2

g. However, NRI’s redshift expression
[3] contains r, the observer area distance, which is the
galaxy’s quasi-Euclidean distance as measured by a sta-
tionary local observer [17]. Aberration gives rise to a
reciprocity relation between distance measures [17] such
that rg = r(1 + zd), where 1 + zd is the NRI’s special
relativistic Doppler redshift factor, and v is the galac-
tic recessional velocity relative to a fixed local observer
[3]. Thus photons arrive locally by a factor of (1 + z)−1

slower than emitted in the receding rest frame due to the
combined relativistic Doppler and gravitational redshifts.
This relative clock rate slowing accounts for the (1+z)−1

broadening of SNe Ia light curves [18, 19]. Additionally,
each photon arriving locally will likewise have its energy
diminished by this same redshift factor. Thus the flux,
F , measured by a local observer would be

F =
L

4πr2
g(1 + z)2

=
L

4πr2[(1 + z)(1 + zd)]2
, (1)

after utilizing the rg = r(1 + zd) substitution. If only
Doppler effects are operational then, as Misner et al. [11]
show, the flux is Fdopp = L(1+zd)−4/4πr2 and the bolo-
metric intensity is Idopp = F/∆Ω = Io(1 + zd)−4, where
∆Ω is the solid angle subtended by the source at r [17].
By analogy, for the NRI we find

I = F/∆Ω = Io[(1 + z)(1 + zd)]−2. (2)

Utilizing the NRI’s total redshift factor [3], 1+z = (1+
Hr/c)/

√
1− 2(Hr/c)2, along with its Doppler factor, 1+

zd = (1+Hr/c)/
√
1− (Hr/c)2, allows fitting I solely in

terms of z over the interval, 0 < z < 1, namely,

INRI = Io/(1 + z)3.56, (3)

which differs from the Tolman relation, Ibb = Io/(1+z)4.
Interestingly, Lubin et al. [20], in reporting observations
on 34 galaxies from three clusters with z = 0.76, z = 0.90,
and z = 0.92, conclude the exponent on (1 + z) varies
from 2.28 to 2.81 in the R band, and 3.06 to 3.55 in the
I band, depending on qo’s value. Further study is needed
to assess the significance of the I band’s near agreement
with the NRI result. Of course Lubin and Sandage were
unaware of this possible connection with the NRI model.
Instead they propose evolutionary effects could bring

their results in agreement with the Tolman exponent,
n = 4, which they assume is correct using the usual ar-
gument that no deviation in the CBR has been found to
one part in 104 [21]. In fact, however, this argument is
flawed. The problem begins with Lubin and Sandage’s
assumption that the CBR is big bang’s relic radiation, on
which basis they conclude that an initial blackbody spec-
trum would remain Planckian only if the normalization
is decreased with redshift by (1+z)−4. They then reason
that, since the Planck equation defines a surface bright-
ness, a test of the Tolman surface brightness is obtain-
able from measuring the deviation of the photon number
per unit surface area of the sky by comparing observa-
tions with the normalization given by the Planck equa-
tion. They then say, correctly, that no deviation in the
CBR has been found to one part in 104. Then, because
they assume the CBR is big bang relic radiation, they
conclude it must have experienced perfect normalization
due to cosmic wavelength expansion, which in turn im-
plies validity of the Tolman surface brightness factor.
This Letter challenges their association of the CBR

with big bang relic radiation, first because Ref. 7 calls
expansion redshifts into question, and second because
the NRI model provides an alternative explanation that
has nothing to do with cosmic expansion and its predic-
tion of the Tolman factor. What we have is a failure to
distinguish between necessary and sufficient conditions.
That is, while it is true that the CBR is Planckian to a
high degree of precision, this is only a necessary condi-
tion for it to be identified with big bang’s relic radiation,
not a sufficient condition. Indeed, the assumption that
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the NRI’s outer shell’s galactic clusters are composed of
pure H stars – which are assumed to have originated in
a different epoch than those in the visible universe – also
guarantees that the CBRmust be Planckian to an equally
high degree of precision in the NRI model.
Turning attention now to the NRI’s (m, z) relation,

using Eq. (1) we utilize the usual definition for the lumi-
nosity distance and write dL =

√
L/4πF = rg(1 + z) =

r(1 + z)(1 + zd), which becomes dL = r(1 + z)2 for
z < 1. In this interval the NRI’s (1 + z) redshift fac-
tor is approximated by Hr/c ≈ z/(1+ z), which leads to
dL = cz(1 + z)/H . Substituting into the distance modu-
lus, m − M = 5(log dL − 1), we find

(m−M)NRI = 5[log cz−logH+log(1+z)]−5 (4)
≈ 5[log cz−logH ] + 1.623z − 5,

as a reasonable fit over 0 < z < 1, which compares closely
with standard cosmology’s redshift prediction,

(m−M)bb = 5[log cz−logH ]+1.086(1−qo)z−5 (5)
≈ 5[log cz−logH ] + 1.75z − 5,

for the recent estimate of qo ≈ −0.75 [18]. If we write
M = M − 5[logH − log(1 + z)]− 5, then Eq. (4) reduces
to m = M+ 5 log cz, the Hubble relation for z � 1.
To investigate the expected brightness for z > 1 we

adapt other parts of the analysis of Ellis [17] to obtain
the specific intensity, iv = Fv/∆Ω, the specific flux per
unit solid angle, for the NRI model. Let the source spec-
trum be represented by a function φ(νg), where Lφ(νg)
is the rate at which radiation is emitted from the galaxy
at frequencies between νg and νg + dνg, with φ(νg) nor-
malized so that

∫ ∞
0

φ(νg)dνg = 1. The frequency, ν,
measured by some stationary observer at r is related to
the emission frequency, νg, in the galaxy’s rest frame by
ν = νg/(1+z), which implies dν = dνg/(1+z). Following
the treatment of Ellis [17] the flux expression becomes

F =
L

4π

∫ ∞
0

φ(νg)dνg

r2
g(1 + z)2

=
L

4π

∫ ∞
0

φ(ν)dν

r2(1 + z)(1 + zd)2
. (6)

Defining the specific flux over the interval dν as Ref. 17,
Fvdν = Lφ(ν)dν/4πr2(1 + z)(1 + zd)2, we obtain, after
substitutions, the specific flux, Fv = Fgφ(ν)/r2(1+z)(1+
zd)2, from which it follows that

iv =
Fv

∆Ω
=

Fgφ(ν)/A
(1 + z)(1 + zd)2

=
Igφ(ν)

(1 + z)(1 + zd)2
, (7)

where A is the surface area of the source and Igφ(ν) = io
is the surface brightness of the source at frequency ν (see
Ellis [17], p. 163). In the NRI (1+z) ≈ (1+zd) for z < 1,
in which case (iv/io)NRI ≈ (1 + z)−3 for this redshift
interval, the same as big bang’s prediction of (iv/io)bb =
(1 + z)−3. But for higher redshifts 1 + z 	∼= 1 + zd, in
which case we must use the full expression,

(iv/io)NRI = (1 + z)−1(1 + zd)−2 (for z > 1). (8)

Before showing how Eq. (8) accounts for the apparent
luminosity of some high-z galaxies, we turn attention to
the NRI model’s prediction of SN Ia brightness enhance-
ment. Fig. 11 of Riess et al. [5] compares predictions of
several cosmological models with data obtained from the
High-z Supernova Search team (Riess et al. [8]), the Su-
pernova Cosmology Project (Perlmutter et al. [22]), and
their own observations of SN 1997ff. Fig. 1 in this Let-
ter reproduces (with Riess’ permission) Fig. 11’s redshift
data, including its point at z = 1.7 for SN 1997ff, along
with the favored LCDM distance modulus curve, as well
as Riess et al.’s 68% and 95% confidence contours for the
SN 1997ff modulus. Additionally, Fig. 1 also includes an
equivalent plot of ∆(m −M)NRI . The protocol used for
obtaining ∆(m−M)NRI was the same as for that used in
Fig. 11, which means that the value of ∆(m−M)NRI was
computed by comparison against the Coasting (Ω = 0)
model. Thus, ∆(m − M)NRI = 5 log dL/DL, where dL

is defined above, and DL is defined by Riess et al. [8]).
It can be seen that at z = 1.7 the NRI produces an en-
hanced brightness relative to the Coasting model of 0.1
magnitudes compared to the LCDM enhancement of 0.2
magnitudes. This puts the NRI’s prediction within the
68% contour for the SN 1997ff distance modulus. Ad-
ditionally, the proper NRI distance modulus traces the
LCDM modulus quite well (within the error bars) over
the redshift interval 0 < z < 2.
Returning now to apparent ultraluminosity of high-z

galaxies, Disney [23] recognizes it is extraordinary that
galaxies at z = 2 are observed at all given that their
apparent brightness is reduced by the Tolman factor, in
this instance (1+z)−4 ∼ 10−2. Consider further the high
redshift z = 5.74 galaxy [24], which was primarily visi-
ble and its redshift possible due to very strong Lyman
alpha emission. Here the Tolman factor is ∼ 5 × 10−4.
The problem in observing high-z galaxies in the stan-
dard cosmology is lessened by comparing big bang’s het-
erochromatic dimming factor, (1 + z)−3, in comparison
with the NRI’s, as given in Eq. (8). The latter dimin-
ishes more slowly as r increases because 1 + zd increases
more slowly than does the NRI’s combined gravitational
and Doppler factor, 1 + z. For z = 5.74 big bang’s
dimming factor is (1 + z)−3 ≈ 0.003, whereas the NRI
dimming factor from Eq. (8) is (1 + z)−1(1 + zd)−2 ≈
[(6.74)(1.9)(1.9)]−1 ≈ 0.04. The more recent observation
of Hu et al. [25] of a galaxy at z = 6.56 yields ≈ 0.01 for
the bb and ≈ 0.15 for the NRI, assuming a 4.5 magnifi-
cation [25]. The quasars at z = 5.82, 5.99 and 6.28 [26]
yield greater differences without magnification. Consider
also the photometric redshift determination of Yahata et
al. [27] of 335 faint objects in the HDF-S, which has ten-
tatively identified eight galaxies with z > 10, two with
z ∼ 14 and one with z ∼ 15. If confirmed these red-
shifts require standard dimming factors stretching from
(1 + z)−3 ≈ 1/1300 to 1/4000, whereas the NRI model
yields (1+z)−1(1+zd)−2 ≈ 1/60 and 1/90 for z = 10 and
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FIG. 1: Hubble diagram of SNe Ia minus an “empty” (Ω = 0) Universe compared to the LCDM model and the equivalent NRI
model. This graph partially reproduces Fig. 11 of Riess et al. [8]. The points are the redshift-binned data from the HZT (Riess
et al. [8]) and the SCP (Perlmutter et al. [22]). Confidence intervals of 68% and 95% for SN 1997ff are indicated.

15 respectively. Also of interest are the observations by
Totani et al. [28] of Hyper Extremely Red Objects. These
they primarily associate with primordial dust-reddened
galaxies at z ∼ 3, while also admitting they may instead
be galaxies with z >∼ 10. Such are unexpected with the
standard cosmology, but they are explainable within the
NRI model. Moreover, even though Eq. (8) yields an
enhanced apparent brightness compared to the standard
cosmology, it still accounts for Olber’s paradox because
the NRI model represents a bounded universe, and hence
a diminishing number density of high-z galaxies.
At even higher z the differences between the NRI and

big bang are more significant. In the big bang celestial
objects do not even exist at z > 100, or even z > 50.
But the NRI model has no such constraints. As its
1+z = (1+Hr/c)/

√
1− 2(Hr/c)2 relation reveals, z in-

creases without limit as r → c/
√
2H . Thus, astronomers

searching for very high redshift galaxies, quasars, SN,
and GRBs should be alert to the NRI’s prediction of ob-
jects with z > 10. The exotic AGN sources detected by
Chandra [29], some possibly with z > 6, fit this scenario.
Moreover, since the NRI has no constraints on the num-
ber density of primordial black holes, it allows certain
types of GRBs to originate from these sources [30].
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